Domain dataanalytics.de kaufen?

Produkt zum Begriff Dataanalytics:


  • Predictive Analytics: Data Mining, Machine Learning and Data Science for Practitioners
    Predictive Analytics: Data Mining, Machine Learning and Data Science for Practitioners

    Use Predictive Analytics to Uncover Hidden Patterns and Correlations and Improve Decision-MakingUsing predictive analytics techniques, decision-makers can uncover hidden patterns and correlations in their data and leverage these insights to improve many key business decisions. In this thoroughly updated guide, Dr. Dursun Delen illuminates state-of-the-art best practices for predictive analytics for both business professionals and students. Delen's holistic approach covers key data mining processes and methods, relevant data management techniques, tools and metrics, advanced text and web mining, big data integration, and much more. Balancing theory and practice, Delen presents intuitive conceptual illustrations, realistic example problems, and real-world case studiesincluding lessons from failed projects. It's all designed to help you gain a practical understanding you can apply for profit.* Leverage knowledge extracted via data mining to make smarter decisions* Use standardized processes and workflows to make more trustworthy predictions* Predict discrete outcomes (via classification), numeric values (via regression), and changes over time (via time-series forecasting)* Understand predictive algorithms drawn from traditional statistics and advanced machine learning* Discover cutting-edge techniques, and explore advanced applications ranging from sentiment analysis to fraud detection

    Preis: 37.44 € | Versand*: 0 €
  • Web and Network Data Science: Modeling Techniques in Predictive Analytics
    Web and Network Data Science: Modeling Techniques in Predictive Analytics

    Master modern web and network data modeling: both theory and applications. In Web and Network Data Science, a top faculty member of Northwestern University’s prestigious analytics program presents the first fully-integrated treatment of both the business and academic elements of web and network modeling for predictive analytics.   Some books in this field focus either entirely on business issues (e.g., Google Analytics and SEO); others are strictly academic (covering topics such as sociology, complexity theory, ecology, applied physics, and economics). This text gives today's managers and students what they really need: integrated coverage of concepts, principles, and theory in the context of real-world applications.   Building on his pioneering Web Analytics course at Northwestern University, Thomas W. Miller covers usability testing, Web site performance, usage analysis, social media platforms, search engine optimization (SEO), and many other topics. He balances this practical coverage with accessible and up-to-date introductions to both social network analysis and network science, demonstrating how these disciplines can be used to solve real business problems.

    Preis: 36.37 € | Versand*: 0 €
  • Chabert, Antoine: SAP Analytics Cloud: Predictive Analytics
    Chabert, Antoine: SAP Analytics Cloud: Predictive Analytics

    SAP Analytics Cloud: Predictive Analytics , Today's organizations must be prepared for tomorrow's events. Forecast future behavior in SAP Analytics Cloud with this comprehensive guide to predictive analytics! Start by learning about the data types, scenarios, and methods used in predictive analytics projects. Then follow step-by-step instructions to build, analyze, and apply predictive models to your business data using classification, time series forecasting, and regression analysis. Automate your models and dive into the data science with this all-in-one guide! In this book, you'll learn about: a. Predictive Scenarios and Projects Understand the basics of predictive analytics in SAP Analytics Cloud: scenarios, data types, and actions. Then plan your predictive project, including identifying the key stakeholders and reviewing the methodology. b. Build, Train, Analyze, and Apply Master predictive models from end to end. Create classification, time series, and regression models; then train them to identify business patterns. Analyze and apply the results of your models to data in SAP Analytics Cloud. c. Practical Demonstrations See predictive analytics in action! Identify use cases for predictive modeling. For each data model, understand practical applications through curated examples with sample business data. Highlights include: 1) Predictive scenarios 2) Predictive forecasts 3) Data modeling 4) Planning 5) Time series model 6) Classification model 7) Regression model 8) Multi-actions 9) Data science 10) Stories and dashboards , Schule & Ausbildung > Fachbücher, Lernen & Nachschlagen

    Preis: 81.99 € | Versand*: 0 €
  • Marketing Data Science: Modeling Techniques in Predictive Analytics with R and Python
    Marketing Data Science: Modeling Techniques in Predictive Analytics with R and Python

    Now, a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications.   Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis.   Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.

    Preis: 48.14 € | Versand*: 0 €
  • Ist ein Machine Learning Engineer ein Ingenieur?

    Ja, ein Machine Learning Engineer ist ein Ingenieur. Sie haben in der Regel einen technischen Hintergrund und arbeiten an der Entwicklung und Implementierung von Machine Learning-Modellen und -Algorithmen. Sie nutzen ihre technischen Fähigkeiten, um Daten zu analysieren, Modelle zu trainieren und Lösungen für komplexe Probleme zu entwickeln.

  • Was sind die wichtigsten Anwendungen von Predictive Analytics in verschiedenen Branchen?

    Die wichtigsten Anwendungen von Predictive Analytics in verschiedenen Branchen sind die Vorhersage von Kundenverhalten und -präferenzen im Einzelhandel, die Optimierung von Produktionsprozessen in der Fertigungsindustrie und die Früherkennung von Krankheiten im Gesundheitswesen. Durch die Nutzung von Datenanalysen können Unternehmen fundierte Entscheidungen treffen, Kosten senken und ihre Effizienz steigern. Insgesamt ermöglicht Predictive Analytics eine bessere Planung und Prognose zukünftiger Ereignisse in verschiedenen Branchen.

  • Was sind die Anwendungsmöglichkeiten von Predictive Analytics und wie können Unternehmen davon profitieren?

    Predictive Analytics ermöglicht Unternehmen, zukünftige Ereignisse und Trends vorherzusagen, um fundierte Entscheidungen zu treffen. Unternehmen können dadurch ihre Marketingstrategien optimieren, Risiken minimieren und ihre Geschäftsprozesse effizienter gestalten. Durch die Nutzung von Predictive Analytics können Unternehmen ihre Umsätze steigern, Kosten senken und Wettbewerbsvorteile erlangen.

  • Was sind die potenziellen Einsatzmöglichkeiten von Predictive-Analytics-Software in verschiedenen Branchen?

    Predictive-Analytics-Software kann in der Finanzbranche eingesetzt werden, um Risiken zu minimieren und Investitionsentscheidungen zu optimieren. In der Gesundheitsbranche kann sie genutzt werden, um Krankheiten frühzeitig zu erkennen und Behandlungspläne zu verbessern. Im Einzelhandel kann die Software genutzt werden, um das Kaufverhalten der Kunden vorherzusagen und personalisierte Marketingstrategien zu entwickeln.

Ähnliche Suchbegriffe für Dataanalytics:


  • Introducing Machine Learning
    Introducing Machine Learning

    Master machine learning concepts and develop real-world solutions Machine learning offers immense opportunities, and Introducing Machine Learning delivers practical knowledge to make the most of them. Dino and Francesco Esposito start with a quick overview of the foundations of artificial intelligence and the basic steps of any machine learning project. Next, they introduce Microsoft’s powerful ML.NET library, including capabilities for data processing, training, and evaluation. They present families of algorithms that can be trained to solve real-life problems, as well as deep learning techniques utilizing neural networks. The authors conclude by introducing valuable runtime services available through the Azure cloud platform and consider the long-term business vision for machine learning. ·        14-time Microsoft MVP Dino Esposito and Francesco Esposito help you ·         Explore what’s known about how humans learn and how intelligent software is built ·         Discover which problems machine learning can address ·         Understand the machine learning pipeline: the steps leading to a deliverable model ·         Use AutoML to automatically select the best pipeline for any problem and dataset ·         Master ML.NET, implement its pipeline, and apply its tasks and algorithms ·         Explore the mathematical foundations of machine learning ·         Make predictions, improve decision-making, and apply probabilistic methods ·         Group data via classification and clustering ·         Learn the fundamentals of deep learning, including neural network design ·         Leverage AI cloud services to build better real-world solutions faster     About This Book ·         For professionals who want to build machine learning applications: both developers who need data science skills and data scientists who need relevant programming skills ·         Includes examples of machine learning coding scenarios built using the ML.NET library

    Preis: 29.95 € | Versand*: 0 €
  • Enterprise Analytics: Optimize Performance, Process, and Decisions Through Big Data
    Enterprise Analytics: Optimize Performance, Process, and Decisions Through Big Data

    The Definitive Guide to Enterprise-Level Analytics Strategy, Technology, Implementation, and Management Organizations are capturing exponentially larger amounts of data than ever, and now they have to figure out what to do with it. Using analytics, you can harness this data, discover hidden patterns, and use this knowledge to act meaningfully for competitive advantage. Suddenly, you can go beyond understanding “how, when, and where” events have occurred, to understand why – and use this knowledge to reshape the future. Now, analytics pioneer Tom Davenport and the world-renowned experts at the International Institute for Analytics (IIA) have brought together the latest techniques, best practices, and research on analytics in a single primer for maximizing the value of enterprise data. Enterprise Analytics is today’s definitive guide to analytics strategy, planning, organization, implementation, and usage. It covers everything from building better analytics organizations to gathering data; implementing predictive analytics to linking analysis with organizational performance. The authors offer specific insights for optimizing supply chains, online services, marketing, fraud detection, and many other business functions. They support their powerful techniques with many real-world examples, including chapter-length case studies from healthcare, retail, and financial services. Enterprise Analytics will be an invaluable resource for every business and technical professional who wants to make better data-driven decisions: operations, supply chain, and product managers; product, financial, and marketing analysts; CIOs and other IT leaders; data, web, and data warehouse specialists, and many others.

    Preis: 29.95 € | Versand*: 0 €
  • Privacy-Preserving Machine Learning
    Privacy-Preserving Machine Learning

    Privacy-Preserving Machine Learning is a practical guide to keeping ML data anonymous and secure. You'll learn the core principles behind different privacy preservation technologies, and how to put theory into practice for your own machine learning. Complex privacy-enhancing technologies are demystified through real world use cases forfacial recognition, cloud data storage, and more. Alongside skills for technical implementation, you'll learn about current and future machine learning privacy challenges and how to adapt technologies to your specific needs. By the time you're done, you'll be able to create machine learning systems that preserve user privacy without sacrificing data quality and model performance.Large-scale scandals such as the Facebook Cambridge Analytic a data breach have made many users wary of sharing sensitive and personal information. Demand has surged among machine learning engineers for privacy-preserving techniques that can keep users private details secure without adversely affecting the performance of models.

    Preis: 55.63 € | Versand*: 0 €
  • Managing Machine Learning Projects
    Managing Machine Learning Projects

    The go-to guide in machine learning projects from design to production. No ML skills required! In Managing Machine Learning Projects, you will learn essential machine learning project management techniques, including: Understanding an ML project's requirements Setting up the infrastructure for the project and resourcing a team Working with clients and other stakeholders Dealing with data resources and bringing them into the project for use Handling the lifecycle of models in the project Managing the application of ML algorithms Evaluating the performance of algorithms and models Making decisions about which models to adopt for delivery Taking models through development and testing Integrating models with production systems to create effective applications Steps and behaviours for managing the ethical implications of ML technology About the technology Companies of all shapes, sizes, and industries are investing in machine learning (ML). Unfortunately, around 85% of all ML projects fail. Managing machine learning projects requires adopting a different approach than you would take with standard software projects. You need to account for large and diverse data resources, evaluate and track multiple separate models, and handle the unforeseeable risk of poor performance. Never fear this book lays out the unique practices you will need to ensure your projects succeed!

    Preis: 56.7 € | Versand*: 0 €
  • Wie werden Predictive Analytics-Modelle eingesetzt, um zukünftige Ereignisse und Trends vorherzusagen?

    Predictive Analytics-Modelle analysieren historische Daten, um Muster und Zusammenhänge zu identifizieren. Anhand dieser Erkenntnisse können zukünftige Ereignisse und Trends prognostiziert werden. Die Modelle werden kontinuierlich trainiert und optimiert, um präzise Vorhersagen zu liefern.

  • Wie beeinflusst Machine Learning die Automobilindustrie, die Gesundheitsversorgung und den Einzelhandel?

    Machine Learning hat die Automobilindustrie revolutioniert, indem es die Entwicklung autonomer Fahrzeuge ermöglicht hat, die die Sicherheit und Effizienz des Straßenverkehrs verbessern. In der Gesundheitsversorgung hat Machine Learning die Diagnose und Behandlung von Krankheiten verbessert, indem es Ärzten dabei hilft, präzisere und personalisierte Behandlungspläne zu erstellen. Im Einzelhandel hat Machine Learning dazu beigetragen, personalisierte Einkaufserlebnisse zu schaffen, indem es das Kaufverhalten der Kunden analysiert und Vorhersagen über ihre zukünftigen Bedürfnisse trifft. Insgesamt hat Machine Learning in diesen Branchen zu Effizienzsteigerungen, Kosteneinsparungen und einer besseren Kundenzufriedenheit geführt.

  • Was sind die Anwendungsmöglichkeiten von Machine Learning in verschiedenen Branchen?

    Machine Learning wird in der Gesundheitsbranche eingesetzt, um Krankheiten frühzeitig zu erkennen und personalisierte Behandlungspläne zu erstellen. In der Finanzbranche hilft Machine Learning bei der Betrugserkennung und Risikobewertung. Im Einzelhandel wird es genutzt, um das Kaufverhalten der Kunden vorherzusagen und personalisierte Empfehlungen zu geben.

  • Was sind die gängigsten Anwendungen von Machine Learning in der heutigen Technologie?

    Die gängigsten Anwendungen von Machine Learning in der heutigen Technologie sind personalisierte Empfehlungssysteme, automatisierte Spracherkennung und -übersetzung sowie Betrugserkennung in Finanztransaktionen. Machine Learning wird auch in der medizinischen Bildgebung, autonomen Fahrzeugen und der Vorhersage von Wetterphänomenen eingesetzt.

* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.